
DOCUMENT RESUME

ED 309 762 IR 013 939

AUTHOR Swan, Karen
TITLE Programming)bjects To Think With: Logo and the

Teaching and Learning of Problem Solving.
PUB DATE Mar 89
NOTE 35p.; Paper presented at the Annual Meeting of the

American Educational Research Association (San
Francisco, CA, March 25-30, 1989).

PUB TYPE Reports - Research/Technical (143) --
Speeches /Conference Papers (150)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS *Computer Assisted Instruction; Hypothesis Testing;

*Instructional Design; Intermediate Grades;
*Intermode Differences; Models; Pretests Posttests;
*Problem Solving; *Programing; Programing Languages;
*Skill Development; Transfer of Training

IDENTIFIERS *Logo Programing Language

ABSTRACT

Unfortunately, much of the research devoted to Logo
and problem solving has not supported the claim that Logo provides an
environment in which children will develop problem solving skills,
but the literature suggests that direct instruction and mediated Logo
programming practice can result in the acquisition and transfer of
certain problem solving abilities. The research reported in this
paper was des' led to test such an hypothesis by differentiating
between interventions combining direct instruction and mediated
practice and discovery learning approaches, and with assessing the
importance of programming within that model. Subjects were 100
students in the fourth through the sixth grades who had all had at
least one year (30 hours) of prior experience programming in Logo.
All subjects were pretested on their ability to solve problems
requiring the use of each of the five problem solving strategies
under investigation, and randomly assigned by grade to o-e of three
treatment conditions--a Logo graphics condition, a cut-p,iper
manipulative condition, or a discovery learning, Logo projects
condition. Results reveal that the model can indeed support the
acquisition and transfer of four problem solving strategies--subgoals
formation, forward chaining, systematic trial and error, and
analogy--whereas neither discovery learning in a Logo environment nor
direct instruction with concrete manipulatives practice can
accomplish that. Indications are that the model can support the
teaching and learning of alternative representation strategies as
well. The findings support claims for the efficacy of Logo as a
menum conducive to the teaching and learning of problem solving, and
argue for the use of knowledge-based instructional design and
computing environments in the creation of problem solving
interventions. (33 references) (Author/BBM)

**************** **X******** **************x**i***** ***** ******* ******* *
Reproductions supplied by EDRS are the best that can be made

from the original document.
* *********** ************* ******* ********** ***** * ***** ************* *****

U S DEPARTMENT OF EDUCATION
°dice of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTEMCI

14.Tnis document nas Peen iepiud,ced as
received trOm the Jerson or organization
originating it
Minor changes have been made to improve
reproduction duality

Points of view or JpniOnS stated In this dote
ment do not neCcssarily represent of' ,a'
OEM position or policy

PROGRAMMING' mums TO THINK MTH:
LOGO AND THE TEACHING AND LEARNING OF PROBLEM SOLVING

Karen Swan
SUNY Albany

paper presented at the Annual Meeting of the American Educational Research
Association, March, 1908, San Francisco

UST COPY AVAILABLE
1)
,..

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Karen Swan

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

The Logo computer programming language has been described
as an environment in which children will develop problem solving
skills. Unfortunately, much of the research devoted to Logo and
problem solving has not discovered such a connection, but a
careful reading of the literature suggests that direct instruction and
mediated Logo programming practice can result in the acquisition
and transfer of certain problem solving abilities. The research
reported in this paper was designed to test such hypothesis. In
particular, it was concerned with differentiating between
interventions combining direct instruction and mediated practice
and discovery leaming approaches, and with assessing the
importance of programming within that model. Results reveal that
the model can indeed support the acquisition and transfer of four
problem solving strategies subgoals formation, forward
chaining, systematic trial and error, and analogy whereas
neither discovery learning in a Logo environment nor direct
instruction with concrete manipulatives practice can. Indications
are that the model can support the teaching and learning of
alternative representation strategies as well. The findings support
claims for the efficacy of Logo as medium conducive to the

. teaching and learning of problem solving, and argue for the use of
knowledge-based instructional design and computing
environments In the creation of problem solving Interventions.

3

"Stated most simply, my conjecture Is that the computer can concretize
(and personalize) the formal. Seen in this light, it is not just another
powerful educational tool. It is unique in providing us with the means for
addressing what Piaget and many others see as the obstacle which is
overcome in the passage form child to adult thinking. I believe that it can
allow us to shift the boundary separating concrete and formal."

Seymour Papert (1980, 21)

Seymour Papert maintains that computers are a truly revolutionary educational

medium because they support "transitional objects to think with," computer representations

of abstract ideas that can bo manipulated in seemingly concrete ways to help bridge the

gap between concrete and formal thought He further argues that this transition will take

place automatically and painlessly when students are provided with well-structured

computer environments rich in such computer manipulatives, environments such as the one

he himself designed, the programming language Logo.

At least as It concerns Logo and the teaching and learning of problem solving, the

literature reports no such automatic acquisition of problem solving Wis. Indeed, multiple

studies have reported no significant increases whatsoever in problem solving abilities

among students involved in Logo programming (Papert, Watt, diSessa, & Weir, 1979; Pea &

Kurland, 1984, 1987; Loon, 1985; Salomon & Peridns, 1987; Johanson, 1988). Indications

are, however, that problem solving skills may be enhanced through direct instruction and

mediated practice in Logo programming environments (Gorman & Boume, 1983; Clements

& Gullo, 1984; Clements, 1987; Carver, 1987; Lehrer & Randle, 1987; Thompson & Wang,

1988). Indeed, our own pilot research found that students' scores on measures of five

problem solving strategies suogoais formation, forward chaining, systematic trial and

error, alternative representation, and analogy were significantly increased following an

instructional intervention that combined direct problem solving instruction with mediated

practice in a Logo programming environment (Swan & Black, 1988).

The research reported in this paper was concerned with validating the success of

that instructional model with respect to Paper's claims for Logo; in particular, with

differentiating between that model and a discovery learning approach, and with assessing

the importance of computer manipulatives within it Two research questions were

addressed:
2

=i1-`

:tr
ai

1.

I.
2

eX
pl

iC
it

ill
St

rt
le

tiO
n

8

t* 3

SU
Pe

rf
01

1
0 01
80

.,.
.._

44
:1

In
ed

ia
te

d

Pl
aC

tiC
e

ill

an
** of

ot
ob

ko
n

jr
,.,

--
vg

iY

le
at

ni
ng

kw
.

br
i,.

._
Pa

rb
ou

ar

pr
ob

le
m

so
m

ev

en
vi

lo
nl

ne
nt

s?

-%
'"

fI
ng

st
ra

te
gi

es

fr
oM

34
1-

7-
w

ili
vi

ttv
ng

64
*

ac
l`

lu
is

V
i°

17

&
xi

/I L
og

o

aC
Q

U
ie

iti
on

e-
r-

lf
;

tr
aP

tb
rk

tin
tn

in
g

et
/W

rO
he

nt

2. is th
e

L
id

ei
,_

°f

A
na

bl
et

n

Pr
V

ri
kt

rn
in

g

so
h

si
cr

et
il"

Y

SU
PP

O
rt

ill
t

of

P
ftb

ie
n)

nu
m

be
r

8°
41

11

%
bo

es

ire
,,,

so
lv

in
g

"*
"

cl
is

tin
ct

pi
ttl

em

Se
et

h

nb
ee

aP
Pl

le
ab

eh
et

ti°
1.

80
0

to
(N
ef

til 4

Si
th

on
ng

st
ru

Z
ie

s

ca
n

be

41
17

n9
4:

Is
he

ii

rh
o

rv
is

ea
h.

, -

G
lil

lo
,

no
b,

Pe
ttk

tik
ir (et Pk

gr
an

7M
in

g

pr
ia

hl
.-

'

"c
;

W
IC

IC
kf

ilt
n,

97

%
In

ge
ne

ra
l

su
ch

ta
:::

:w
Po

rt
ed

In th
is A
Z L
at

vi
er

,

le
ek

ol
oh

l.,
_ ot
ill

ov
ir

--
w

in
s in

ge
ne

ra
l C
at

ta
lo

of th
es

e

ei
te

rn
eu

ve
vA

is

...
.

su
b.

w
as

co
nc

er
ne

d

-.
17

74

K
ur

is
h,

,

m
8

P
itl

gr
ei

nt
ni

ng

ii.

"C
h

O
f

th
es

:Z
ee

nt
at

iO
ni

11
4/ ar
,-w

w
"

br
in

at
io

n,

fo
r W

ith th
e

te
so

hT
ng al
V

bY 4 Pe
,

79
6)

."

00
73

)

ck
to

ot
tie

k7

-i
m

io
gy

.

%
ne

w

,

si
tte

m
at

ic

*m

ch
ai

ni
ng

ar
ks

ko
m

in
g

of fit
ie

of

ge
ne

ra
iS

tif
tY

pi
tti

ei
nd

eS
ef

fp
tio

ns

ba
se

ci
de

in
ifo

ns

an
ti

ex
po

ci
th

ill

in
t°

fO
U r

m
itt

s

...
, lin
g

eb
.s

te
gy

ift
pi

:n
tu

cn
bi

lti
nt

.

th
its

P
ec

ilk
ng

to

th
i:4

:1
1(

ni
:o

f

4v
w

°n
so

he
l:p

ro
ce

lis
m

*n
"

be
en

cs
oa

rb
on

iv
iy

xw
ila

tio
ne

:b
bi

sa
i

ch
sc

vn
g

ris
tip

ic
pi °f

t
an

d / P
ft6

1.
17

1 P
C

)1
1"

SO
M

iv
.

71
_

C
Y

)

an

si
d-

-t
er

i

IP
Pi

le
d,

an
d

re
ct

iv
on

tte
nh

(1
01

na
ln

op
en

:4
4T

h

ge
ne

ra
ili

ar
".

44
a

pa
tti

ct
i

N
an

*

Is
44

41
11

11
11

11
09

0.
18 1-

j7
In

g e st
ill IV Y t t st

ra
te

gi
es

ha
ve

so pi
er fo

nn
at

io
n

lis
t#

49
tY

of lo
ve

's

ve

IL
!

--
w

oo
ns

t

si
g. be

in
to

if
**

*

ev
en

w
he

n

no

a,

.w
m

at
io

n

a

Si
ng

kt

O
ff

ie
u

Pi
ttb

k

Sl
ib

ga
w

.r
et

br
Si

ss
ue

, : bt
ba

ki
nu

gh
tn

g

It pr
ak

i_
_

au
ac

eP
U

bl
em

b

Pa
*

in
el

es
s

its

ab
le

st
ib

go
al

a st
a" as th
e

de
ly

ni
tu

.,

et
yo

rs
. so

kt
io

n

ie
se

-- f be tu
na

,

bi
uw

., iii of a

1. %
e) it.

T
ha

tic
tn

ca
n ha --

""
kl

"

.-
w

ilv
tI

ga

Pf
tla

ie
ln

in
to

w
w

in
iti

,..
-e

st
tf

a,
ia

l_

4P
iti

tie
th

op
m

h,
__

".
""

Y
th

fo
llo

w
ile

s

'a
nd

JO
SS

bf
bi

en

ki
ir

ek
ai

nk
hl

hp pi
,

-4
".

1"
.

ng fu
r

st
ep

s:

C
O

nn
eo

fi
on

s

2,
00

r,

ee
tf ib
w

at
if

t,

la rh
e

ki
ve

ra
D

iZ
ite

in
U

ne
d

pr
te

re
m

s.
"C

at
IC

V
/

to se
e

,5

Sp
ec

itt

th
et

ha
eo

ns k ca
n 4

3

"C
I

th
ei

r

i

3. Evaluation. Test the subproblems generated for grain size and further
decomposition. tf the subproblems are manageable or cannot be further
decomposed, solve them. Recombine these partial solutions into the total
solution using the connections specified in step 2.

4. Recursion. Otherwise, repeat the second and thin' steps for each of the
subproblems generated. Continue the process until no more smaller
problems can be generated for any of the subproblems.

While subgoals formation might seem an obvious strategy to adults, it is not at all

obvious to many children (Carver & Klahr, 1988). Moreover, of all the problem solving

strategies, it can most clearly be implemented and concretized in Logo programming. In

Logo, small subprocedures are easily written and placed in the workspace. Because these

can be called from anywhere in a program, a program can simply be a list of such

subprocedures, a very concrete representation of the subgoals that maka up a

programming solution.

arkimachilning
Forward chaining involves working from what Is given in a problem towards the

problem goal in stepby-step, transformational increments that bring one progressively

closer to that goal. The forward chaining process can be decomposed into the following

steps:

1. Problem definition. Specify the problem goal. Specify what is given.
Specify the constraints, if any.

2. Transformation. Use domain operators to manipulate the givens to bring
them closer to the goal state.

3. Evaluation. Compare the desired goal, the givens, and the
transformation. Test to see whether the transformation is really closer to
the goal than the givens. If it is not, redo step 2.

4. Recursion. Make the transformation a new given. Repeat steps 2 and 3
using the new given. Continue in this manner until the goal state is
reached and the problem is solved.

A programming environment, especially an interpreted environment like Logo, is

inherently supportive of the forward chaining process. Transformations can be

Implemented, their effects accessed, and successful changes instantiated as partial
PrOCIMMS. win MIMS ease ana IMO MIL A program can mus MI aevetopea in

4
6

incremental steps and such development provide a concrete model of the forward chaining
process. An important part of forward chaining, however, involves the ability to choose

appropriate transformations and evaluate whether or not these actually bring one nearer
problem solution. Forward chaining thus requires soma sort of mental model of the

problem space, and is not, therefore typically a novice technique (Green & Simon, 1984).

assirnittoditantemr
Systematic trial and error involves the recursive testing of possible solutions in a

systematic, guided fashion, and the problem reduction and/or refinement resulting from
such tests. The steps involved in the systematic trial and error process include:

1. Problem definition. Specify the problem goal.

2. Approximate solution. Create and implement a plan to solve the
problem.

3. Evaluation. Compare the problem goal with the instantiated solution. tt
there are no discrepancies between them, the problem is solved.
Otherwise, generate a description of the discrepancies .between the
desired goal and the instantiated solution.

4. Recursion. Use the description of goal/eoluton discrepancies to revise
the plan, and reapply steps 2 and 3. Continue in this manner until the
instantiated solution matches the desired goal.

Piaget (Ginsburg & Opper, 1900) believed that the application of systematic trial

and error strategies was an Important determinant of formal operational ability. Systematic

trial and error, then, is an obvious candidate for testing Piped's (19e0) notion that

programming environments support the concretizing of the formai. Certain types of

graphics programming, mongover, are paradigmatic of systematic trial and error strategies.

Debugging also males use of, and provides symbolic representations for, such technig.les

(Carver, 1967).

ANIMIIMLAMMOIntIM

Alternative representation Involves conceptualizing a problem from differing

perspectives. Poiya (1973) writes that often the way a problem Is stated Is really all that

makes it difficult, that simple restatement will make Its solution obvious. Alternative

representation Is thus the antidote to functional fixedness (Dunker, 1946). It can be

decomposed into the following four-step description:

7 5

1. Problem definition. Specify the problem.

2. Alternative representation. Generate an alternative problem
specification

3. Evaluation. Test to see whether the new problem specification suggests
problem solution. If it does, solve the problem.

4. Recursion. Otherwise, repeat steps 2 and 3 by generating and
evaluating other problem specifications until a problem solution is found.

Programming is conducive to the development of alternative representations both

because there are never single correct solutions to programming problems, and because

differing representations can quite easily be instantiated and pragmatically tested in

programming environments. Indeed, Clements and Gul lo's (1984) study of the effects of

Logo programming on young children's cognition found significant increases in their ability

to produce alternative representations. Statz's (1973) finding of significant increases on

permutation tasks may also support this view.

MON
Analogy involves the discovery of a particular similarity between two things

otherwise more or less unlike, and 'a mapping of knowledge from one domain (the base)

onto another (the target) predicated on a system of relations that holds among the objects of

both domains.' (Gentler, 1987) An important factor in this process, especially in problem

solving contexts, is goal-relatedness, how one domain is like another with respect to a

specified goal (Holyoak & Koh, 1987). The use of analogy in problem solving can be

decomposed Into the following steps:

1. Problem definition. Specify the desired goal. Specify the base and the
target systems.

2. Mapping. Perform a mapping between the base and target systems.

3. Evaluation. Test the soundness of the match in terms of both structural
similarity and pragmatics (goal related conditions). If the -.analogy
generated meets the goal conditions, and the structural similarity between
the base and the target holds, the mapping is sound. Use the base
domain solution to generate a solution in the target domain.

4. Recursion. Otherwise, return to step 1 and specify a new base domain.
Apply steps 2 and 3 to It. Continue in this manner until an adequate
representation is discovered.

Programming environments inherently support the development of analogy in that

one is always mapping between computer code (a formal representation) and program

output (a concrete representation). Indeed, Doug Clements (1987) found significantly

better analogical reasoning among students with prior Logo experience.

These five problem solving strategies subgoals formation, forward chaining,

systematic trial and error, alternative representation, and analogy can be concretely

represented, then, within a Logo programming context We accordingly designed our

instruction and our testing procedures around them. The instruction was split into units, one
for each strategy. Each unit included first instruction focused on a particular strategy

(declarative knowledge) followed by mediated practice solving problems designed to be

particularly amenable to solutions employing that strategy (procedural knowledge). We

likewise created six separate tests, each designed to measure students' facility in applying

specific strategies to non-computing problems. Our goal was for students to transfer the

strategies learned in the intervention to the paper and pencil tasks of the problem solving
tests.

Methodology

Stibigta

Subjects were one hundred students in the fourth through sixth grades of a private

suburban elementary school. All subjects had at leastone year (thirty hours) prior

experience programming in Logo.

P122111111

All subjects were pre-tested on their ability to solve problems requiring the use of

each of the five problem solving strategies under investigation, and randomly assigned by

grade to one of three treatment conditions a Logo graphics condition, a cut-roper

manipulatives condition, or a discovery learning, Logo projecb condition. Students In the

first two conditions received the same basic problem solving Instruction but differing

practice environments. Students in the Logo graphics group received practice problems
in :in Logo graphic program:fling, while students In the coat -paper manipulatives group

worked on similar problems involving the use of cut-paper manipulatives. Students in the

third, Logo projects group received Logo programming problems to work on, but did not

7

receive direct problem solving instruction.

All subjects were post-tested upon completion of the intervention using different but

analogous problem solving strategy tests. Differ& ices between pre- and post-test scores

were examined using analysis of variance with repeated miasures. Indeperxient variables

were test, strategy, and treatment group. The dependent variables were the scores on the

tests of each of the problem solving strategies. A more complete description of these tests

and of each of the three treatment conditions follows.

TIMM
Problem solving strategy tests consisted of sets of paper and pencil problems

whose solutions required correct application of the particular ategies being investigated.

Two different but analogous versions of each test were developed and randomly assigned

by condition on the pre- test. Students were then assigned the alternative form of each test

on the post-test They were allowed as much time as they felt they needed to complete

each test, but were required to work independently with no help from either the teachers or

their peers.

aubgoeleJonnellon. (Figure 1) Our measure of students' subgoals formation

ability consisted of mathematical word problems that required decomposition for correct

solution. Students were asked not only to solve the problean but to show how they broke

them into parts, and were given creator comedy identMed subgoalsois well as tete

correct answer.

Eotmlichaining, (Figure 2) The test designed to measure subjects' forward

chaining sift was a paper-and-pencil version of the computer program RocWs Boots

(The Learning Company, 1982). In Rocky's Boots, symbolic and, or, and not gates are

combined to produce machines that respond to targeted attributes and sets of attributes (eg.

blue diamonds, croons or green circles, etc.). Combinations of gates must be built up in a

forward chaining manner to achieve correct solutions. Our version had subjects draw the

required connections.

aledenelicalkantenm (Figure 3) Cryptography involves systematically trying

and testing different symbol combinations to attain coherent decodina systems. We choose

8
10

two decoding exercises to test subjects' ability to systematically utilize trial and error

strategies. The first of these was a shifted alphabet code. The second involved variations

on a number code problem from Newell and Simon (1971).

Bow.
aEgalhimmildon-Ixobilims

teal west to the badman oa ?weft. She bomOt 2 soteloths that oat$1.1444mcm, $ pomade dmg
cost 1,211/emdte ead a book dot out SILK How amthdld she void altogether/

2601.004),y
ccdoteizes) X 'r 2f = "/

iPz. O atist)

61/14#4(&

Joke 'Wks to the perk seek monde' sad rldm th't be. bed home. It takes hhe 1
boor. The roved dip bus ride takes 1/2 hem Nov key meld It take Ma to
seta !nth ways?

Ota has 0/le Nay

/-yr. mak ofte iihty

5 1441s

1 1

9

004140+ GO 4 A A A giveni,42rhez

ug As KON and

. c<-- (--011° whew Wolions
47 d Use, yea need .

IWO
Systernetic trial arid error problems

"Ark fig enwl melol Iry .1crq Wyk."

>',,kimntil .1k lay SIO
This Is a efOtlIfiCA you all Rom It is written in a AMA plOaptn, 6 code
created by shifting the letters of the alphabet right or left tYor example If It stood
for a (JUT IT DOISN'THD, then I .arid stand for b. I for e, k for d, and so on.)

Figure out the code and 4.4 the quotation. Slmes ail your mod, Including the
alphabet derivation ero! ;zits, solet.!ons.

abcde-Ciph;lklmno P
.5 4- Gt y w y d e. -q 5 hqrs EA. w z-
rj k_.1 0A A 0 p r

sip° NI A L. C S
6E. RA L 05
R 0 Et E R.-r0 D'J

This Is an addition problem written 41 code. leek letter stands for a number, but
linty are not in any spatial relationship to each other. The D stands for 5. Your

Job b to flews out the code and to pi= the problem In members. Skov all your
work Including the derivations of the ilges), I, S. S. I. 4, 4, 7, 4, f and partial
solutions.

11

Allamidhempossanidion, (Figure 4) The measure of students' ability to create

alternative representations we used was decried from the figures subtest of the Torrance

Test of Creative ThInidng (Torrance, 1972). Students were given sets of either parallel lines

or circles and asked to use these as a basis for producing as many interesting and unusual

drawings as they could. These were scored for quantity, diversity, originality, and

elaboration.

Analogy. (Figure 5) Subjects' skill at analogical reasoning was measured with

completion exercises comprised of Items representing both verbal and visual analogy.

They were given one analogy and asked to complete a second according to the

relationship involved in the former.

Ilearnieft
All subjects in all groups worked in pairs during their regular computer classes. A

teacher and/or an Intern were available for help on all problems. Both maintained a

mediated learning approach toward student assistance, eliciting student and/or modeling

their own cognitive processes as they guided students toward problem solution. Student

pairs also helped each other solve problems. In gem* classes met for two forty-flve

minute periods each week. The entire intervention took approximately two and one half

months.

Direct instruction in each of the particular problem solving strategies was given to

students In the Logo graphics and cut paper manipulatives conditions and were exactly the

same for both groups. Wall charts based on the teak analyses of the problem solving

strategies but translated into children's language were made and used to introduce each

strategy unit Figure 8, for example, shows the chart for forward chaining. For each unit, the

appropriate chart was produced and each step of the strategy explained and discussed. An

example of how the strategy might be applied to help solve a problem was given and

student examples elicited. The chart was then hung on the wall, problem sets distributed,

and work on them begun.

'NW It 1
3

3

5cLa _t_ . sur.PIALA4

°'" -2Ls_ec.,____.3
33

A-e.rgis (03,(1 ..baste htt1

- g e.

3a r v3r

..3

stack, (cakl vo (lei k)cJI

QTAP:PAT::1$'foe: Poi's

® XdZ.: ?,(x

% .

ROCK
1614 s WAIX Alec _oak_ .

: emJ 114Pey
010144E :s

/la: fNfN :: APES cal':
WORD r ; LICAITZAteLs

roar; NANO :: Tog
'Wow Flor/ER --Pu.sai-
Crook OvibLE:: ROME fine

16

14

Wall charms fazffaalsheininaalndeaka

FORWARD CHAINING

1. What Is the problem?
What Is the problem goal?
What Is given In the problem?

2. How can you change what is given so it is
more like the goal?
Try it.

3. Is it really closer to the goal?
It not, redo step 2.

4. If it is, make your change the new problem
given. Go to steps 2 and 3 and redo for the
new given. When the given matches the goal,
you are done.

Students in the Logo graphics condition we given unit problem sets comprised of

four graphics programming problems each and asked to solve them in Logo. Students in

the cut-paper manlpulathres condition were given unit sets comprised of four cut-paper

manipulates problems each, and provided with construction paper, rulers, scissors, and

rubber cement with which to solve them. The purpose of the problems was to provide a

practice envirbnment In which students could evoke procedural representations of the

problem solving strategies being taught. Thus, problems in each set were designed to be

particularly amenable to solutions involving the use of the strategy under discussion, and

difficult enough to be a genuine problem. Whenever possible, similar p:oblerns were used

in both conditions. Figures 7, 8, and 9, for sum*, show subgoals formation problems tor

both conditions.

7

15

SUBGOALS FORMATION GRAPHICS

I. House.

Put together a TRIANGLE and a SQUARE procedure to draw a HOUSE.

2. Neighborhood.

Put together many HOUSEs to draw a NEIGHBORHOOD.

3. Sailboat.

Use it TRIANGLE and s HALF.CIRCLE procedure to draw a SAILBOAT.

4. face.

Put together carious shapes of your own choosing to draw a FACE.

- 1..11 . II f

StraGOALS FORMATION I

Cat' a triangle and a square out of construction payer. Pat theta togethov to make
a hot:se. Paste your house here.

a: ..1 ,.9.1 Le I .-- II I

SUBGOALS FORMATION - 2

Make many houses from triangles and squares. Paste them together here to make a
neighborhood.

16

In some cases, however, the use of problems with similar surface features would

result in highly disparate degrees of cognitive difficulty. The Logo graphics problems In tt e.

unit on systematic trial and error, for example, had students perform a variety of screen

formatting activities drawing a double border around the screen, a target, an aerial view

of city blocks, and a house plan which required the testing and refining of Logo

procedures. Such activities could be done much easier with cut paper. Pentamino puzzles

which likewise required the testing and refining of possible solutions, but were of similar

cognitive difficulty, were therefore substituted.

For each problem they solved, students in both groups were required to fill out a

problem solving worksheet that showed the givens, the goal, and the solutions steps for that

problem. Figures 10 and 11 show examples of completed worksheets. Students in the

Logo graphics condition were also required to turn in a listing and a run of their programs.

Students in the cut-paper manipulatives condition were required to turn in their completed

designs.
/

Students in the Logo projects condition were not given direct problem solving

strategy instruction and were not required to fill in problem solving worksheets. They

worked on Logo programming projects they selected from lists covenng four areas of

programming concepts procedures, variable., conditionals, and recursion. Projects

involved both graphics and list manipulation problems and were chosen to represent the

range of prvlte-'-uw typically assigned In Logo classes. Examples of these are given in

Figures 12 and 13. Students in this condition were required to work on one or more project

from each list, progressing through the lists at their own speed and as time allowed. Their

projects could be as simple or as complex, and utilize whatever programming and/or

problem solving strategies they desired. Just like students in the Logo graphics condition,

students in the Logo projects condition were required to turn in a listing and a run of their

programs.

lizze12
agkassimminavtithmachipm

Logo_falwasmill2n

LOGO PROJECTS

1. Write procedures that draw regular shapes. Put the shapes togetbee

in a superprocedure that draws a picture or a design.

2. Write procedures that draw the parts of a face (i.e. EYE, LIPS,

NOSE, EAR). Put them together in a superprocedure that draws a

FACE.

3. Write a procedure that PRINTS a poem. Include it in a

superprocedure that illustrates your poem.

4. Write procedures that draw all the letters in your name. Put them

together in a superprocedure that writes your name on the screen.

5. Write a superprocedure that humorously illustrates an idiom (i.e.

"His head was in the clouds', You drive me up a wall"). Include

animation in your idiom illustration.

6. Write a superprocedure that draws a sign or a poster. Use letters

and drawing in it.

20

PROJECTS WITH VARIABLES

1. Write procedures to draw variable sized shapes.

2. Write procedures to draw variable sized shapes filled with whatever
color the person wants.

3. Write a procedure that writes a name the person types in all over
the screen.

4. Write a MADLIBS procedure that asks the person to type in various
words (i.e. an adjective, a name, a place, a verb, etc) and then prints
out a funny story using those words.

5. Write a procedure that draws a variable-sized house.

6. Write procedures to create a variable sized alphabet.

21

Students were tested before and after treatment on measures of each of the five

problem solving skills. Two different but analogous versions of aach test were developed.

Students were randomly assigned one or the other version of each test by condition on the

pre -test, and then were given the alternative version of each test on the post-test to assure

pre- to post-test reliability. Mean pre-test scores were compared between groups using

one-way analysis of variance and found to be statistically equivalent (F2,97 0.33, p > .10),

hence the groups were assumed to be generally equal in problem solving ability before

treatment

Raw scores on all tests except those for alternative representation were converted

to percent correct scores and compared using three-way analysis of variance with repeated

measures, Because they had no maximum possible scores and so no percentage correct

could be calculated for them, alternative representation measures were evaluated

separately using two-way analysis of variance with repeated measures.

Reeulb

The results of the various analyses argue that explicit instruction and mediated

Logo programming practice is superior to both similar instruction with cut-paper

manipulatives practice, and discovery learning within Logo programming domains for

supporting the aquisition and transfer of subgoals formation, forward chaining, systematic

trial and error, and analogy strategies. Within this context, It appears that such combination

is most supportive of the teaching and learning of subgoals formation strategies among

students in the ape groups studied. Results involving the teaching and looming of

alternative represents Lion strategies were more problematical and require further

investigation.

.1.111 -.1 I 1 I -.A I. I.' IL'. I.'

Means and standard deviations for the three-way analysis of variance comparing

scores on measures of subgoals formation, forward chaining, systematic trial and error, and

analogy are given in Tables 1 and 2. The resulting ANOVA table is shown in Table 3.

22

NMI
Means Table for subsismds formation (SG). forward chaininaff:Q.

aMolidirallEsnstarmr_Maintamiggx(M

GRAPHICS CUT PAPER PROJECTS (T X S)
lei. PRE 44.0 35.8 29.0 36.0

POST 63.1 41.6 28.4 43.9
EQ PRE 58.9 51.5 55.6 55.3

POST 65.9 46.1 50.7 54.0
sTE. PRE 36.8 20.6 28.5 27.8

POST 48.1 17.5 26.0 30.3
ANAL. PRE 78.9 75.8 81.5 78.8

POST 88.1 75.5 79.5 80.3
(GROUP)' 60.2 45.5 47.1 50.8

la

EQ

KEE

ANAL

-.&arls.2

AllImlialritintsmz=antinologuArmu

GRAPHICS CUT -PAPER EffillEaS.
PRE 22.5 22.1 24.5

POST 22.5 29.7 25.8

PRE 18.1 15.2 18.8

POST 17.0 15.8 20.6
PRE 25.0 27.7 27.9

POST 21.8 27.4 27.2

PRE 11.4 14.1 12.4

POST 8.6 14.5 16.0

23 .

k

Table 3

ANOVA Table for whoosh formapon (SGL forward chaining (FC),

atitaneteekiginfemOMAntanelggylitaj

a 12E MS F E
MEAN 2074999.0 1 2074999.0 1568.08 0.0000

GROUP 33907.5 2 16953.7 12.81 0.000

ERROR 128357.9 97 1323.3

TEST 1576.6 1 1578.6 5.94 0.0166

TO 8871.7 2 3437.3 12.96 0.0000

ERROR 25725.0 97 265.2

STRATEGY 283190.9 3 94397.0 207.11 0.0000

SG 13478.5 6 2248.4 4.93 0.0001

ERROR 132830.9 97 455.8

TS 2274.2 3 758.1 3.84 0.0132

TSG 743.4 6 123.9 0.6 0.7338

ERROR 60540.8 97 208.0

The kidependent imidebtes in the research design were Mt, strategy, and

treatment group. The dependent variables were the scores on the tests of each of the four

problem solving strategies submitted for analysis. There was one bebvsen-subjects factor,

treatment gimp, and two vallhln-subjectsfactors, Uri and elralegy. Significant mein effects

were found for all these factors (group, F2,97 " 12.81, p < .01; test, Fur, 5.94, P 4 .06;

strategy, F3,97 207.11, p < .01), indicating significant differences along ell these

dimensions. Of these, only the group effect is particularly meaningful. Because the groups

were statistically equivalent before, but not after receiving the I ..nter-renbns, the group effect

Indicates differences in scores resulting from treatment. This result favors the Logo graphics

condition which had an OVerall mean score of e0.2 percent correct, compared with the

cut-paper manipulatives group whose mean score was 45.5 percent correct, and the Logo

projects group whose mean score was 47.1 percent correct.

FOUr altretiM NiereC11011 effeCel were 8130 examinea Di/ MIS assign.

24 0 6

Significant test by group, (Fz97 - 12.96, p < .01), test IN strategy (F3,97 3.64, p < .05), and
strategy by group (F3.97 i 207.11, p < .01) interactions were found. No test by strategy by
group interaction was discovered (p > .10).

The interaction of greatest interest is test by group. It indicates differences in

pre- to post-test changes in scores resulting from the differing treatments. The tests by group
interaction was examined in greater detail by assessing the simple test effects at each level
of group. A strong test effect was found for the Logo graphics group (Fl .97 - 29.95, P < .01),
indicating significant pre- to post-test changes among students receiving that treatment, but
not for the other two groups (p > .10). Table 4 shows the mean differences between pre-
and post-test scores by group and strategy. Marginal group means reveal that students in
the Logo graphics group improved an average of 11.1 percentage points on the four
measures, while the scores of students in the cut-paper manipulatives group remained
essentially the same, and the scores of students in the Logo projects group actually declined
slightly (although not significantly). These results argue strongly that the Logo graphics

Wolverton, and the Lcgo graphics intervention alone, resulted in improvements in
students' problem solving abilities. tt is interesting to note that mean pre- to post-test
increases among students receiving the Logo graphics treatment were nearly identical to
those observed in our pilot research Indicating a consistent treatment effect, and adding
support to conclusions arguing for the efficacy of the Intervention.

letzleA

tellunfutAlfceEtalinomfataulraisiommilonallimatalstaining(132).
MinEllatillAncLannUMAntinslagstiAMLI

GRAPHICS CUT-PAPER PROJECTS (STRATEGY)

SG 19.1 6.0 -0.6 7.9

FC 7.0 -6.4 -4.9 -1.3

STE 11.3 -5.4 -0.5 2.5

ANAL 7.2 -3.1 -2.0 1.5

(GROUP) 11.1 -0.7 -2.0 2.7

Because the various problem solving strategy measures were not designed to be
equivalent, the two interaction effects involving the strategy dimension are not necessarily
meaningful. The test by strategy interaction is the more interesting of the two. It indicates

that students had greater pm- to post-test changes on certain strategy measures than on

25 27

others, but, because the measures were not equivalent, any comparison of mean
differences across strategies is problematical. Looking at the mean differences table with
this in mind, notice that students showed by far the greatest increases on subgoals formation

tests, and that part of the reason for this is that students in the Logo graphics group improved

on these measures, whereas neither they, nor students in the Logo projects group improved

on any of the others. An examination of the simple test affect at each level of strategy
reveals that indeed subgoals formation measures were the only ones on which the majority

of students exhibited significant pre- to post-test differences (For - 11.59, p < .01) Such
findings at least suggest that subgoals formation strategies were more easily acquired by

students in this age group, a finding which concurs with the results of our pilot research.

The strategy by group interaction indicating differing scores relative to students in

other groups on differing strategy measures. Were thos measures equivalent, or were
patterns of differences found on the pre-test radically different from overall patterns, then the

differing efficacies of particular treatments for supporting the acquisition and transfer of
specific strategies could be argued. Neither, however, was the case. The result, then, is

significant, but not meaninglUl.

Alemattianarlan.
The tests of sib id**. ability to create aliernabve representations had no n*ximum

possible correct. Total scores on these tests ranged from a low of 21 to highs cf over 250
points, thus the variance on this measure was very large. The problem was compounded by

the facts that students in all groups showed improvements on this measure, and that a
comparison of pre-test group means reveals they were not statistically equivalent (F2,97

4.99, p < .01;, hence that the groups were equal in alternative representational ability before

treatment Means and standard deviations of raw scores on these tests are given in Tables

5 and 8. The analysis of variance for alternative representation is given in Table 7.

labial
thimlablelatillmemmomeerilion

GRAPHICS CUT PAPER PROJECTS (TEST)

PRE 70.7 108.2 83.3 86.8

POST 109.1 123.1 94.9 106.7

(GROUP) 89.9 114.7 89.9 97.8

'awe
Standard tat or trAr -121-immtramgseM6

GRAPHICS CUT-PAPER PROJECTS

PRE 30.2 58.3 45.0
POST 43.4 53.9 53.5

Mad
ANOMAidSOACANDMISILINRIMadice

N-100)a DE
MEAN 1913259.6 1 1913259.6 563.36 0.0000

GROUP 28058.5 2 14029.3 4.13 0.0000
ERROR 329431.8 97 3396.2

TEST 24819.1 1 2481).1 10.56 0.0018
TG 8631.9 2 3315.9 2.57 0.0621

ERROR 125363.8 97 1292.4

The analysis of variance for tests of altemathm representation reveals significant
mein effects for group (F2,97 al 4.13; p < .06) and bet (Fur/ 19.20; p < .01). Neither of
these are particularly meaningful in themselves. The group effect is not meaningful because
the groups were not equivalent to begin with. The test effect does indicate significant overall
pre- to post-test differences, but the mans table reveals that students In all groups Improved
on this measure. Because all groups showed improvtnents, what is not and cannot be
kflOW11 is whether such increases represent genuine learning or are rather the result of
practice andfor maturation.

What would be meaningful would be a solid to by group interaction effect
Unfortunately the analysis of variance reveals only weak interaction (F2R7 2.57; .06 > p <
.10). To examine the test by group irisraclion in greater detail, the simple Mt effect was
assessed at each level of group. A strong test effect was found for the Logo graphics group
(F1,97 18.91; 13 < .01), whereas only a weak test effect was found for the cut-paper
manipulatives group (Fi ,g7 3.81, .05 > p < .10), and no test effect at all was found for the

29 27

Logo projects group (Fig/ in 1.81; p > .10). It is interesting to note that these results mirror

the findings for subgoals formation and perhaps indicate that direct instruction was a more

significant factor in the success of the intervention than Logo programming, although both

appear necessary for transfer to take place.

These differences are Illustrated by Figure 14 which shows the mean pre- to
post-test differences for each group on alternative representation measures. It can be seen

that the Logo graphics group showed improvements nearly twice as great as those of the

group with the next highest improvements, the cut-paper manipulatives group. However,

because students in the Logo graphics group had much lower pre-test scores than students

in the other two groups, the greater gains they made might be accounted for by differential

ability levels as well as by treatment effects. The most we can conclude, then, is that it is

possible that students in the Logo graphics group showed an increased facility for
alternative representation, and that such possibility argues for further investigation with more

evenly matched groups.

120

110

100

90

80 -
70 -

,02 PAPER
%%%%%%%%%

%

CONTROL
GRAPHICS

PRE -TEST POSTTEST

In terms of our research questions, we can conclude that, direct inetriletion was
more effective than discovery learning in supporting the acquisition and transfer of problem
solving skills from Logo programming to non-computing domains, and that the Logo
programming envrionment was an improtard factor in such acquisition and transfer. The
results argue quite strongly, then, for the superiorityof direct instruction and mediated Logo
programming practice over both similar instruction with cut-paper manipulatives practice,
and discovery teaming in similar paractice environments, for the acquisition and transfer of
four problem solving strategies subgoals formation, forward chaining, systematic trial and
error, and analogy among middle school students. Indications are that such instruction
and practice may Iliewise be most effective for the teaching and learning of alternative
representation measures, although further research with more evenly matched groups is
needed to determine its effectiveness in this area.

Such findings argue that the intervention we designed does, in fact, support the
teaching and learning of problem solving, that increased scores on problem solving strategy
measures resulted from it and not from the effects of practice and/or maturation. They also
lend support to our analysis of the Logo/problem solving literature, in that direct instruction
and mediated programming practice resulted in students' acquisition and transfer of
problem solving skills whereas Logo programming practice alone did not. Indeed,
indications are that direct instruction may be a more important factor than Logo
programming in the success of the intervention we designed. Both factors, however, appear
necessary, as students in the group receiving direct instruction with cut-paper manipulatives
practice fared little better than students in the Logo discovery group.

T issues raised by the research results deserve further comment The irwolve the
efficacy of knowledge-based instructional design for the teaching and learning of problem
solving, and the rnediational nature of computer programming environments, the Logo
programming environment in particular.

Knowledge-based instructional design refers to premising the design of instruction
on desired knowledge cutcomes rather than on desired behaviroal outcomes. The
distinction is a real one. The desired outcome of problem solving instruction, for example, is
increased problem solving abilities. When such abilities arse conceived in terms of desired
behaviors, they are understood as being able to solve particular kinds of problems and are
not broken down any further because they are not conceptualized beyond this behavioral
level. Problem solving ability is seen as its behavioral manifestation, hence, the proscribed

31 29

instruction has correspondingly involved practice solving such problems. Little emphasis is

1 placed on the general knowledge structures which underlie their solution, and the
particulars of specific strategies are not addressed. This sort of instruction, especially in the

context of computer programming, has not been successful in increasing students' problem

solving abilities (Abbott, Salter & Soloway, 1986; Shaw, 1963; Patterson & Smith, 1986;
Mandinach & Unn, 1987). They are not successful because complex cognitive behaviors
like problem solving involve more than their manifest behaviors and must be addressed at a

deeper level, at the level of the knowledge structures which support such behaviors.

Indeed when one conceives of problem solving instruction in terms of knowledge

outcomes, the desired outcome is understood as the knowledge necessary to solve
particular kinds of problems. The focus is not on the behavior but on the knowledge
supporting the behavior. The knowledge supporting problem solving behviors is the
procedural knowledge of the specific steps involved in particular problem solving strategies.

That such knowledge underlies problem solving has been demonstrated by problem solving

computer programs (Newell & Simon, 1972; Anderson, 1983). Moreover, such knowledge

has a declarative as well as a procedural component (Anderson, 1985; Flaw% 1966). At

least in the case of the instruction we designed. a direct focus on a declarative knowledge of

the steps involved in the particular problem solving strategies was a necessary factor in the

success of the intervention. Because it focuses on behaviors and not knowledge,
behvalorally -based instructional design ignores this important, perhaps critical, declarative

knowledge component.

Knowledge-based instructional design played a critical role in the success of the
instructional model we developed. It may well be a more useful approach to the design of

problem solving instruction in general, perhaps to the design of any instruction concerned
with complex cognitive behaviors. It clearly deserves further careful study.

The mediationsl nature of computing environments refers to the way in which
computers can be used to support what Papert (1900) refers to as "transitional objects to
think with.- Papert maintains that computing environments can support quasi-concrete,

dynamic representrigium--- of abstract ideas, representation that can be manipulated and
tested and which provide immediate vrete feedback concerning the soundness of their
formulation. Such representations are transitional in that they can help bridge the gap
between condiete and formal thought. They are mediational in that they support abstract

thinking which might otherwise overwhelm working memory.

Such a view is supported by the finding that students given direct problem solving
instruction and mediated practice in a non-computing erwrionment did not learn the problem
solving strategies as well as did students given similar dime Insbustion and mediated Logo

practice. Lehrer and Randle's work (1987) also suggests such a view. if computing
environments can be designed to support such transitional objects for thaking, they might
play an important role in education. The notion certainly deserves further investigation.

The development of problem solving and critical thinking skills is a cructial 131.0-bieffi

for education today. The research presented in this paper clearly demonstrates a successful
model for developing particular problem solving abilities among upper elementary student
populations, a model which, in itself, deserves further study. More importantly, it suggest
methods for designing instruction that might develop such skills in a broad range of subject
area contexts, in particular, knowledge-based instructional design and the mediationsl use
of computing environments. In today's educational climate, such methods deserve
immediate serious attention.

3

31

Anderson, J. R. (1983) The ,4rchitecture of Cognition. Cambridge, Mk. Harvard University
Press.

Anderson, J. R. (1985) Cognitive Psycholcgy and Its Implications. NY: W. H. Freeman.

Carver, S. M. (1987) Transfer of Logo debugging skill: analysis, instruction, and assessment
Computer Systems Group Bulledn, 14 (1) , 4-8.

Carver, S. M. and Klahr, D. (1988) Assessing children's Logo debugging skills with a formal
model. Journal of Educational Computing Research, 2 (4), 487-525.

Clement C. A., Kurland, D. M., Mawby, R. and Pea, R. D. (1988) ical reasoning and
computer programming. Journal of Educational Computing Research, 2 (4), 73-94.

Clements, D. H. OM) Loryoultudinal study cl the effects of Lvslesir chogrammi on cognitive
137.abilities and achievement Journal of Educational Computing , 3 (1)14-

Clements, D. H. and Gullo, D. F. (1964) Effects of computer prograrnmi
children's cognitive abilities and achievement Journal of Educational
1051-1068.

psycl on young
76

Pleven, J. H. (1986) Cognitive Development Englewood Cliffs, NJ: Prentice-Hail.

Gentner, D. (1987) Mechanisms of Analogical Learning. Urbana, IL University of Illinois,
Department of Computer Science.

Ginsburg, H. and Opper, S. (1900) Rogers Theory of Intellectual Devekrrnent Englewood
Cliffs, NJ: Prentice-Hail.

Gorman, H., Jr. and Boume, L E. (1903) Learning to think by learning Logo: rule learning In
third-grade computer programmers. Bulletin of the Psychonomic So.ty, 21, 186-187.

Green, J. G. and Simon, H. A. (1984) Problem SoNing and Reasoning. (Technical Report
No UPIIT/LROC/ONR/APS-14). Washington, DC: Learning Research and Development
Center, Office of Naval Research.

Holyoak, K. J. and Koh, K. (1087) Surface and structural similarity In analogical transfer.
Memory and Cognition, 14 332-340.

Johanson, Roger P. (1988) Computers, cognition and curriculum: retrospect and prospect.
Journal of Educational Computing Research, 4 (1), -30.

Lawler, R. W. (1985) Computer Experience and Cognitive Developmant A Child's Learning
In a Computer Culase. New York Halsted.

Lehrer, R. and Randle, L (1987) Problem solving, =Recognition and composition: the
effects of interactive software for first -grade children. Joumai of Educational Computing
Research, 3 (4), 408-428.

Lehrer, R., Sancllio, L and Randle, L (1988) Learning' pro-proof geometry with Logo. Paper
presented at the annual meeting of the American Educational Research Association, New
Orleans.

Leron. U. (1966) Logo today: vision and reality. The Computing Teacher, 12 gs). 26-32.

32 4

1

Mandinach, E. B. and Linn, M. C. (1987) Cognitive consequences of programming:
achievements of experienced and talented programmers. Journal of Educational Computing
Research, 3 (1), 53-72.

Newell, A. and Simon, H. A. (1972) Human Problem Solving. Englewood Cliffs, NJ:
Prentice-Hall.

Papert, s. (1980) Mindstorms. New York: Basic Books.

Papert, S., Watt, D., diSessa, A., and Weir, S. (1979) Final Report of the Brookline Logo
Project, (Logo Memo 53). Cambridge, MA: Artificial Intelligence. Laboratory, Massachusetts
Institute of Technology.

Patterson, J. H. and Smith, M. S. (1986) The role of computers in higher order thinking. In J.
A. Culbertson and L L Cunningham (Eds.) Microcomputers and Education. Chicago:
University of Chicago Press.

Pea, R. D. and Kurland, D. M. (1984) On the cognitive effects of learning computer
programming New Ideas in Psychology, 2 (2), 137-167.

Pea, R. D. and Kurland, D. M. (1987) Logo programming and the development of planning
skills. In K. Sheingold and R. D. Pea (Eds.) Mirrors of Minds. Norwood, NJ: Ablex.

Polya, G. , . 973) How To Sa e It Princeton, NJ: Princeton University Press.

Salomon, 0. and Perkins, D. N. (1987) Transfer of cognitive skills from programming: when
and how? Journal of Educational Computing Research, 3 (2), 149-170.

Shaw, D. G. (1986) Effects of learning to program a computer in BASIC or Logo on problem
solving abilities. AEDS Journal, 19 (2/3), 176-189.

Statz, J. (1973) Problem Solving and Logo: Final Report of the Syracuse Logo Project
Syracuse, NY: Syracuse University.

Swan, K. and Black, J. B. (1988) The cross-contextual transfer of problem solving skills from
computing to non-computing domains. Paper presented at the annual meeting of the
American Educational Research Association, New Orleans.

Thompson, A. D. and Wang, H. M. C. (1988) Effects of a Logo microworid on student ability
to transfer a concept Journal of Educational Computing Reeearch, 4 (3), 335-347.

Torrance, E. P. (1972) Torrance Test of Creative Thinking. Lexington, MA. Personal Press.

Wickelgren, W. A. (1974) How To Solve Problems. San Francisco: W. H. Freeman.

5

......".

i

